Fairness of Machine Learning in Search Engines

Author:

Fang Yi1,Liu Hongfu2,Tao Zhiqiang3,Yurochkin Mikhail4

Affiliation:

1. Santa Clara University, Santa Clara, CA, USA

2. Brandeis University, Waltham, MA, USA

3. Rochester Institute of Technology, Rochester, NY, USA

4. IBM Research & MIT-IBM Watson AI lab, Cambridge, MA, USA

Publisher

ACM

Reference64 articles.

1. Alekh Agarwal Alina Beygelzimer Miroslav Dud'ik John Langford and Hanna Wallach. 2018. A reductions approach to fair classification. In ICML. Alekh Agarwal Alina Beygelzimer Miroslav Dud'ik John Langford and Hanna Wallach. 2018. A reductions approach to fair classification. In ICML.

2. Arturs Backurs Piotr Indyk Krzysztof Onak Baruch Schieber Ali Vakilian and Tal Wagner. 2019. Scalable fair clustering. In ICML. Arturs Backurs Piotr Indyk Krzysztof Onak Baruch Schieber Ali Vakilian and Tal Wagner. 2019. Scalable fair clustering. In ICML.

3. AI Fairness 360: An extensible toolkit for detecting and mitigating algorithmic bias

4. Are Emily and Greg More Employable Than Lakisha and Jamal? A Field Experiment on Labor Market Discrimination

5. Alex Beutel , Jilin Chen , Tulsee Doshi , Hai Qian , Li Wei , Yi Wu , Lukasz Heldt , Zhe Zhao , Lichan Hong , Ed H Chi, et al . 2019 . Fairness in recommendation ranking through pairwise comparisons. In SIGKDD. Alex Beutel, Jilin Chen, Tulsee Doshi, Hai Qian, Li Wei, Yi Wu, Lukasz Heldt, Zhe Zhao, Lichan Hong, Ed H Chi, et al. 2019. Fairness in recommendation ranking through pairwise comparisons. In SIGKDD.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mitigating Demographic Bias of Federated Learning Models via Robust-Fair Domain Smoothing: A Domain-Shifting Approach;2024 IEEE 44th International Conference on Distributed Computing Systems (ICDCS);2024-07-23

2. FATE: Learning Effective Binary Descriptors With Group Fairness;IEEE Transactions on Image Processing;2024

3. Fair oversampling technique using heterogeneous clusters;Information Sciences;2023-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3