Probing the Robustness of Pre-trained Language Models for Entity Matching

Author:

Akbarian Rastaghi Mehdi1,Kamalloo Ehsan1,Rafiei Davood1

Affiliation:

1. University of Alberta, Edmonton, AB, Canada

Publisher

ACM

Reference24 articles.

1. Nils Barlaug and Jon Atle Gulla . 2021. Neural Networks for Entity Matching: A Survey. ACM Transactions on Knowledge Discovery from Data ( 2021 ). https://doi.org/10.1145/3442200 10.1145/3442200 Nils Barlaug and Jon Atle Gulla. 2021. Neural Networks for Entity Matching: A Survey. ACM Transactions on Knowledge Discovery from Data (2021). https://doi.org/10.1145/3442200

2. On the Dangers of Stochastic Parrots

3. Mikhail Bilenko and Raymond J. Mooney. 200 3. Adaptive Duplicate Detection Using Learnable String Similarity Measures. Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. https://doi.org/10.1145/956750.956759 10.1145/956750.956759 Mikhail Bilenko and Raymond J. Mooney. 2003. Adaptive Duplicate Detection Using Learnable String Similarity Measures. Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. https://doi.org/10.1145/956750.956759

4. Tom B. Brown , Benjamin Mann , Nick Ryder , Melanie Subbiah , Jared Kaplan , Prafulla Dhariwal , Arvind Neelakantan , Pranav Shyam , Girish Sastry , Amanda Askell , Sandhini Agarwal , Ariel Herbert-Voss , Gretchen Krueger , Tom Henighan , Rewon Child , Aditya Ramesh , Daniel M. Ziegler , Jeffrey Wu , Clemens Winter , Christopher Hesse , Mark Chen , Eric Sigler , Mateusz Litwin , Scott Gray , Benjamin Chess , Jack Clark , Christopher Berner , Sam McCandlish , Alec Radford , Ilya Sutskever , and Dario Amodei . 2020 . Language models are few-shot learners . Advances in Neural Information Processing Systems , Vol. 2020-December (2020). https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. 2020. Language models are few-shot learners. Advances in Neural Information Processing Systems, Vol. 2020-December (2020). https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

5. Jacob Devlin , Ming Wei Chang , Kenton Lee , and Kristina Toutanova . 2019 . BERT: Pre-training of deep bidirectional transformers for language understanding . NAACL HLT 2019 - 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies - Proceedings of the Conference (2019 ). https://doi.org/10.18653/v1/N19--1423 10.18653/v1 Jacob Devlin, Ming Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirectional transformers for language understanding. NAACL HLT 2019 - 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies - Proceedings of the Conference (2019). https://doi.org/10.18653/v1/N19--1423

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cost-efficient prompt engineering for unsupervised entity resolution in the product matching domain;Discover Artificial Intelligence;2024-08-16

2. Cost-Effective In-Context Learning for Entity Resolution: A Design Space Exploration;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

3. Leveraging Pretrained Language Models for Enhanced Entity Matching: A Comprehensive Study of Fine-Tuning and Prompt Learning Paradigms;International Journal of Intelligent Systems;2024-04-15

4. Leveraging Knowledge Graphs for Matching Heterogeneous Entities and Explanation;2023 IEEE International Conference on Big Data (BigData);2023-12-15

5. Train Once, Match Everywhere: Harnessing Generative Language Models for Entity Matching;2023 International Conference on Computational Science and Computational Intelligence (CSCI);2023-12-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3