The harmonic or geometric mean

Author:

Citron Daniel1,Hurani Adham2,Gnadrey Alaa2

Affiliation:

1. Haifa University Campus, Haifa, Israel

2. ORT Braude College of Engineering, Karmiel, Israel

Abstract

For several decades, computer scientists have been arguing which mean is more appropriate for summarizing computer performance: the harmonic or the geometric. We show that many test cases used in the past to discredit one mean or the other are either artificial or incidental. Changing only one of the benchmarks may result in totally different conclusions.In addition, we conclude that for the SPEC CPU2000 benchmark suite, the choice of averaging has very little influence on the relative standing of different machines. Therefore, the decision to purchase one system rather then another should not be influenced by the type of averaging used.

Publisher

Association for Computing Machinery (ACM)

Reference11 articles.

1. How not to lie with statistics: the correct way to summarize benchmark results

2. R. Grappel and J. Hemenway. A tale of four uPs: Benchmarks quantify performance. Electronic Design News (EDN) 26(7):179--265 April 1981. R. Grappel and J. Hemenway. A tale of four uPs: Benchmarks quantify performance. Electronic Design News (EDN) 26(7):179--265 April 1981.

3. Re-evaluation of the RISC I

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. R.I.P. Geomean Speedup Use Equal-Work (Or Equal-Time) Harmonic Mean Speedup Instead;IEEE Computer Architecture Letters;2024-01

2. Hmem: A Holistic Memory Performance Metric for Cloud Computing;Lecture Notes in Computer Science;2024

3. Python meets JIT compilers: A simple implementation and a comparative evaluation;Software: Practice and Experience;2023-09-05

4. RegCPython: A Register-based Python Interpreter for Better Performance;ACM Transactions on Architecture and Code Optimization;2022-12-16

5. Revisiting Issues in Benchmark Metric Selection;Lecture Notes in Computer Science;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3