Outliers in Smartphone Sensor Data Reveal Outliers in Daily Happiness

Author:

Buda Teodora Sandra1,Khwaja Mohammed2,Matic Aleksandar1

Affiliation:

1. Koa Health, Spain

2. Imperial College London, UK, Koa Health, Spain

Abstract

Enabling smartphones to understand our emotional well-being provides the potential to create personalised applications and highly responsive interfaces. However, this is by no means a trivial task - subjectivity in reporting emotions impacts the reliability of ground-truth information whereas smartphones, unlike specialised wearables, have limited sensing capabilities. In this paper, we propose a new approach that advances emotional state prediction by extracting outlier-based features and by mitigating the subjectivity in capturing ground-truth information. We utilised this approach in a distinctive and challenging use case - happiness detection - and we demonstrated prediction performance improvements of up to 13% in AUC and 27% in F-score compared to the traditional modelling approaches. The results indicate that extreme values (i.e. outliers) of sensor readings mirror extreme values in the reported happiness levels. Furthermore, we showed that this approach is more robust in replicating the prediction model in completely new experimental settings.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture,Human-Computer Interaction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3