Dynamic Task Mapping with Congestion Speculation for Reconfigurable Network-on-Chip

Author:

Chao Hung-Lin1ORCID,Tung Sheng-Ya1,Hsiung Pao-Ann2

Affiliation:

1. National Chung Cheng University, Taiwan, R.O.C.

2. National Chung Cheng University, Chiayi, Taiwan, R.O.C.

Abstract

Network-on-Chip (NoC) has been proposed as a promising communication architecture to replace the dedicated interconnections and shared buses for future embedded system platforms. In such a parallel platform, mapping application tasks to the NoC is a key issue because it affects throughput significantly due to the problem of communication congestion. Increased communication latency, low system performance, and low resource utilization are some side-effects of a bad mapping. Current mapping algorithms either do not consider link utilizations or consider only the current utilizations. Besides, to design an efficient NoC platform, mapping task to computation nodes and scheduling communication should be taken into consideration. In this work, we propose an efficient algorithm for dynamic task mapping with congestion speculation (DTMCS) that not only includes the conventional application mapping, but also further considers future traffic patterns based on the link utilization. The proposed algorithm can reduce overall congestion, instead of only improving the current packet blocking situation. Our experiment results have demonstrated that compared to the state-of-the-art congestion-aware Path Load algorithm, the proposed DTMCS algorithm can reduce up to 40.5% of average communication latency, while the maximal communication latency can be reduced by up to 67.7%.

Funder

Ministry of Science and Technology, Taiwan, R.O.C.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference34 articles.

1. Smart hill climbing for agile dynamic mapping in many-core systems

2. Traffic Aware Scheduling Algorithm for Network on Chip

3. B. Towles and W. J. Dally. 2004. Principles and Practices of Interconnection Networks. Morgan Kaufmann. B. Towles and W. J. Dally. 2004. Principles and Practices of Interconnection Networks. Morgan Kaufmann.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3