Implementing constraint imperative programming languages

Author:

Lopez Gus1,Freeman-Benson Bjorn2,Borning Alan1

Affiliation:

1. Dept. of Computer Science & Engineering, FR-35, University of Washington, Seattle, WA

2. School of Computer Science, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6

Abstract

Constraint Imperative Programming (CIP) languages integrate declarative constraints with imperative state and destructive assignment, yielding a powerful new programming paradigm. However, CIP languages are difficult to implement efficiently due to complex interactions between the two donor paradigms. Neither the virtual machines for classical object-oriented languages, nor those for existing constraint languages, are suitable for implementing CIP languages, as each assumes a purely imperative or a purely declarative computation model. We have developed a new virtual machine for CIP languages, the K-machine, an imperative machine with an incremental constraint solver and a constraint-based, rather than value-based, data store. This virtual machine allows user-defined constraints to be defined using constraint constructor definitions which are the CIP analog to method definitions. Similar to methods, these constructors are able to reference variables indirectly through many levels of pointers. The K-machine maintains relations between objects in the presence of state change to these indirectly referenced objects. The K-machine is capable of supporting a wide variety of CIP languages, including our most recent: Kaleidoscope'93.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Case Study: Design Strategies for Enabling Visual Application Blocks of Bluetooth Library;IEEE Access;2022

2. Automatically selecting and optimizing constraint solver procedures for object-constraint languages;Companion Proceedings of the 15th International Conference on Modularity;2016-03-14

3. A multi-paradigm language for reactive synthesis;Electronic Proceedings in Theoretical Computer Science;2016-02-02

4. Specifying and Solving Constraints on Object Behavior.;The Journal of Object Technology;2014

5. Handling SLA Violations via Constraint Imperative Programming;LISS 2013;2013-12-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3