Privacy-preserving Decentralized Learning Framework for Healthcare System

Author:

Kasyap Harsh1ORCID,Tripathy Somanath1

Affiliation:

1. Indian Institute of Technology Patna, Bihta, Patna, Bihar, India

Abstract

Clinical trials and drug discovery would not be effective without the collaboration of institutions. Earlier, it has been at the cost of individual’s privacy. Several pacts and compliances have been enforced to avoid data breaches. The existing schemes collect the participant’s data to a central repository for learning predictions as the collaboration is indispensable for research advances. The current COVID pandemic has put a question mark on our existing setup where the existing data repository has proved to be obsolete. There is a need for contemporary data collection, processing, and learning. The smartphones and devices held by the last person of the society have also made them a potential contributor. It demands to design a distributed and decentralized Collaborative Learning system that would make the knowledge inference from every data point. Federated Learning [21], proposed by Google, brings the concept of in-place model training by keeping the data intact to the device. Though it is privacy-preserving in nature, however, it is susceptible to inference, poisoning, and Sybil attacks. Blockchain is a decentralized programming paradigm that provides a broader control of the system, making it attack resistant. It poses challenges of high computing power, storage, and latency. These emerging technologies can contribute to the desired learning system and motivate them to address their security and efficiency issues. This article systematizes the security issues in Federated Learning, its corresponding mitigation strategies, and Blockchain’s challenges. Further, a Blockchain-based Federated Learning architecture with two layers of participation is presented, which improves the global model accuracy and guarantees participant’s privacy. It leverages the channel mechanism of Blockchain for parallel model training and distribution. It facilitates establishing decentralized trust between the participants and the gateways using the Blockchain, which helps to have only honest participants.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture

Reference36 articles.

1. The security of machine learning

2. Keith Bonawitz Vladimir Ivanov Ben Kreuter Antonio Marcedone H. Brendan McMahan Sarvar Patel Daniel Ramage Aaron Segal and Karn Seth. 2016. Practical secure aggregation for federated learning on user-held data. Retrieved from http://arxiv.org/abs/1611.04482. Keith Bonawitz Vladimir Ivanov Ben Kreuter Antonio Marcedone H. Brendan McMahan Sarvar Patel Daniel Ramage Aaron Segal and Karn Seth. 2016. Practical secure aggregation for federated learning on user-held data. Retrieved from http://arxiv.org/abs/1611.04482.

3. Federated learning of predictive models from federated Electronic Health Records

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3