Formation Detection with Wireless Sensor Networks

Author:

Paschalidis Ioannis Ch.1,Dai Wuyang1,Guo Dong1

Affiliation:

1. Boston University, Boston, MA

Abstract

We consider the problem of detecting the formation of a set of wireless sensor nodes based on the pairwise measurements of signal strength corresponding to all transmitter/receiver pairs. We assume that formations take values in a discrete set and develop a composite hypothesis testing approach which uses a Generalized Likelihood Test (GLT) as the decision rule. The GLT distinguishes between a set of probability density function (pdf) families constructed using a custom pdf interpolation technique. The GLT is compared with the simple Likelihood Test (LT). We also adapt one prevalent supervised learning approach, Multiple Support Vector Machines (MSVMs), and compare it with our probabilistic methods. Due to the highly variant measurements from the wireless sensor nodes, and these methods' different adaptability to multiple observations, our analysis and experimental results suggest that GLT is more accurate and suitable for formation detection. The formation detection problem has interesting applications in posture detection with Wireless Body Area Networks (WBANs), which is extremely useful in health monitoring and rehabilitation. Another valuable application we explore concerns autonomous robot systems.

Funder

U.S. Department of Energy

Division of Emerging Frontiers in Research and Innovation

Army Research Office

Office of Naval Research

Division of Information and Intelligent Systems

Division of Computer and Network Systems

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Reference24 articles.

1. A. W. Bowman and A. Azzalini. 1997. Applied Smoothing Techniques for Data Analysis. Oxford University Press New York. 10.1145/214451.214456 A. W. Bowman and A. Azzalini. 1997. Applied Smoothing Techniques for Data Analysis. Oxford University Press New York. 10.1145/214451.214456

2. On interpolating between probability distributions

3. Detection of weak unstable predicates in distributed programs

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3