Response Selection and Automatic Message-Response Expansion in Retrieval-Based QA Systems using Semantic Dependency Pair Model

Author:

Su Ming-Hsiang1,Wu Chung-Hsien1,Huang Kun-Yi1,Lin Wu-Hsuan1

Affiliation:

1. National Cheng Kung University, Tainan, Taiwan

Abstract

This article presents an approach to response selection and message-response (MR) database expansion from the unstructured data on the psychological consultation websites for a retrieval-based question answering (QA) system in a constrained domain for emotional support and comforting. First, we manually construct an initial MR database based on the articles collected from the psychological consultation websites. The Chinese Knowledge and Information Processing probabilistic context-free grammar is adopted to obtain the semantic dependency graphs (SDGs) of all the messages and responses in the initial MR database. For each sentence in the MR database, all the semantic dependencies, each composed of two words and their semantic relation, are extracted from the SDG of the sentence to form a semantic dependency set. Finally, a matrix with the element representing the correlation between the semantic dependencies of the messages and their corresponding responses is constructed as a semantic dependency pair model (SDPM) for response selection. Moreover, as the number of MR pairs in the psychological consultation websites is increasing day by day, the MR database in the QA system should be expanded to meet the needs of the users. For MR database expansion, the unstructured data from the message board are automatically collected. For the collected data, the supervised latent Dirichlet allocation is adopted for event detection and then the event-based delta Bayesian Information Criterion is used for message and response article segmentation. Each extracted message segment is then fed to the constructed retrieval-based QA system to find the best matched response segment and the matching score is also estimated to verify if the new MR pair is suitable to be included in the expanded MR database. Fivefold cross validation was employed to evaluate the performance of the proposed retrieval-based QA system over the expanded MR database based on SDPM. Compared to the vector space model-based method, the Okapi BM25 model, and the deep learning-based sequence-to-sequence with attention model, the proposed approach achieved a more favorable performance according to a statistical significance test. The retrieval accuracy based on MR expansion was also evaluated and a satisfactory result was obtained confirming the effectiveness of the expanded MR database. In addition, the user's satisfaction score of the proposed system was evaluated using the Cronbach's alpha value and the satisfaction score of the proposed SDPM was higher than those of the methods for comparison.

Funder

Ministry of Science and Technology, Taiwan

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design and Implementation of Pollution Source Automatic Monitoring System Based on Big Data;2023 International Conference on Internet of Things, Robotics and Distributed Computing (ICIRDC);2023-12-29

2. Continuous Chain Fibonacci: Knowledge Management System with Chatbot;Advances in Intelligent Systems and Computing;2021-10-26

3. Transformer-based Empathetic Response Generation Using Dialogue Situation and Advanced-Level Definition of Empathy;2021 12th International Symposium on Chinese Spoken Language Processing (ISCSLP);2021-01-24

4. Attention-Based Response Generation Using Parallel Double Q-Learning for Dialog Policy Decision in a Conversational System;IEEE/ACM Transactions on Audio, Speech, and Language Processing;2020

5. A Two-Stage Transformer-Based Approach for Variable-Length Abstractive Summarization;IEEE/ACM Transactions on Audio, Speech, and Language Processing;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3