Data mining of maps and their automatic region-time-theme classification

Author:

Gelernter Judith1

Affiliation:

1. Carnegie Mellon University, Pittsburgh, PA

Abstract

The goal of this research is to organize maps mined from journal articles into categories for hierarchical browsing within region, time and theme facets. A 150-map training set collected manually was used to develop classifiers. Metadata pertinent to the maps were harvested and then run separately though knowledge sources and our classifiers for region, time and theme. Evaluation of the system based on a 54-map test set of unseen maps showed 69%--93% classification accuracy when compared with two human classifications for the same maps. Data mining and semantic analysis methods used here could support systems that index other types of article components such as diagrams or charts by region, time and theme.

Publisher

Association for Computing Machinery (ACM)

Reference25 articles.

1. Web-a-where

2. Extracting metadata for spatially-aware information retrieval on the internet

3. Entlich R. Olsen J. Garson L. Lesk M. Normore L. and Weibel S. 1997. Making a Digital Library: the contents of the CORE project ACM Trans. on Info Systems vol. 15 103--123 (April 1997) DOI=http://doi.acm.org.proxy.libraries.rutgers.edu/10.1145/248625.248627 10.1145/248625.248627 Entlich R. Olsen J. Garson L. Lesk M. Normore L. and Weibel S. 1997. Making a Digital Library: the contents of the CORE project ACM Trans. on Info Systems vol. 15 103--123 (April 1997) DOI=http://doi.acm.org.proxy.libraries.rutgers.edu/10.1145/248625.248627 10.1145/248625.248627

4. Harnessing the expertise of 70,000 human editors: Knowledge-based feature generation for text categorization;Gabrilovich E.;Journal of Machine Learning Research 8,2007

5. Gelernter J. 2008. MapSearch: A protocol and prototype application to find maps. Doctoral Thesis. UMI Order Number: UMI Order No. pending Rutgers University. Gelernter J. 2008. MapSearch: A protocol and prototype application to find maps. Doctoral Thesis. UMI Order Number: UMI Order No. pending Rutgers University.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Location Based Text Mining Method Using ANN for Geospatial KDD Process;Advances in Neural Networks - ISNN 2010;2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3