Affiliation:
1. Oak Ridge National Laboratory, Tennessee, USA
Abstract
To meet the needs of a diverse range of workloads, asymmetric multicore processors (AMPs) have been proposed, which feature cores of different microarchitecture or ISAs. However, given the diversity inherent in their design and application scenarios, several challenges need to be addressed to effectively architect AMPs and leverage their potential in optimizing both sequential and parallel performance. Several recent techniques address these challenges. In this article, we present a survey of architectural and system-level techniques proposed for designing and managing AMPs. By classifying the techniques on several key characteristics, we underscore their similarities and differences. We clarify the terminology used in this research field and identify challenges that are worthy of future investigation. We hope that more than just synthesizing the existing work on AMPs, the contribution of this survey will be to spark novel ideas for architecting future AMPs that can make a definite impact on the landscape of next-generation computing systems.
Funder
Office of Science
Advanced Scientific Computing Research
U.S. Department of Energy
Publisher
Association for Computing Machinery (ACM)
Subject
General Computer Science,Theoretical Computer Science
Cited by
46 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献