Improving the Learning of Code Review Successive Tasks with Cross-Task Knowledge Distillation

Author:

Ben Sghaier Oussama1ORCID,Sahraoui Houari1ORCID

Affiliation:

1. Université de Montréal, Montréal, Canada

Abstract

Code review is a fundamental process in software development that plays a pivotal role in ensuring code quality and reducing the likelihood of errors and bugs. However, code review can be complex, subjective, and time-consuming. Quality estimation , comment generation , and code refinement constitute the three key tasks of this process, and their automation has traditionally been addressed separately in the literature using different approaches. In particular, recent efforts have focused on fine-tuning pre-trained language models to aid in code review tasks, with each task being considered in isolation. We believe that these tasks are interconnected, and their fine-tuning should consider this interconnection. In this paper, we introduce a novel deep-learning architecture, named DISCOREV, which employs cross-task knowledge distillation to address these tasks simultaneously. In our approach, we utilize a cascade of models to enhance both comment generation and code refinement models. The fine-tuning of the comment generation model is guided by the code refinement model, while the fine-tuning of the code refinement model is guided by the quality estimation model. We implement this guidance using two strategies: a feedback-based learning objective and an embedding alignment objective. We evaluate DISCOREV by comparing it to state-of-the-art methods based on independent training and fine-tuning. Our results show that our approach generates better review comments, as measured by the BLEU score, as well as more accurate code refinement according to the CodeBLEU score.

Publisher

Association for Computing Machinery (ACM)

Reference48 articles.

1. 2000. PMD. https://pmd.github.io/

2. 2001. Checkstyle. https://checkstyle.org/

3. 2005. FindBugs. https://findbugs.sourceforge.net/

4. Software inspections: an effective verification process

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3