Feature space optimization for content-based image retrieval

Author:

Avalhais Letricia P. S.1,da Silva Sergio F.1,Rodrigues Jose F.1,Traina Agma J. M.1,Traina Caetano1

Affiliation:

1. University of São Paulo, São Carlos, Brazil

Abstract

Substantial benefits can be gained from effective Relevance Feedback techniques in content-based image retrieval. However, existing techniques are limited due to computational cost and/or by being restricted to linear transformations on the data. In this study we analyze the role of nonlinear transformations in relevance feedback. We present two promising Relevance Feedback methods based on Genetic Algorithms used to enhance the performance on the task of image retrieval according to the user's interests. The first method adjusts the dissimilarity function by using weighting functions while the second method redefines the features space by means of linear and nonlinear transformation functions. Experimental results on real data sets demonstrate that our methods are effective and the results show that the transformation approach outperforms the weighting approach, achieving a precision gain of up to 70%. Our results indicate that nonlinear transformations have a great potential in capturing the user's interests in image retrieval and should be further analyzed employing other learning/optimization mechanisms.

Publisher

Association for Computing Machinery (ACM)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ClusMAM;Proceedings of the 31st Annual ACM Symposium on Applied Computing;2016-04-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3