Proving the unique fixed-point principle correct

Author:

Hinze Ralf1,James Daniel W.H.1

Affiliation:

1. University of Oxford, Oxford, United Kingdom

Abstract

Say you want to prove something about an infinite data-structure, such as a stream or an infinite tree, but you would rather not subject yourself to coinduction. The unique fixed-point principle is an easy-to-use, calculational alternative. The proof technique rests on the fact that certain recursion equations have unique solutions; if two elements of a coinductive type satisfy the same equation of this kind, then they are equal. In this paper we precisely characterize the conditions that guarantee a unique solution. Significantly, we do so not with a syntactic criterion, but with a semantic one that stems from the categorical notion of naturality. Our development is based on distributive laws and bialgebras, and draws heavily on Turi and Plotkin's pioneering work on mathematical operational semantics. Along the way, we break down the design space in two dimensions, leading to a total of nine points. Each gives rise to varying degrees of expressiveness, and we will discuss three in depth. Furthermore, our development is generic in the syntax of equations and in the behaviour they encode - we are not caged in the world of streams.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Foundational extensible corecursion: a proof assistant perspective;ACM SIGPLAN Notices;2015-12-18

2. Foundational extensible corecursion: a proof assistant perspective;Proceedings of the 20th ACM SIGPLAN International Conference on Functional Programming;2015-08-29

3. Unifying structured recursion schemes;ACM SIGPLAN Notices;2013-11-12

4. GSOS Formalized in Coq;2013 International Symposium on Theoretical Aspects of Software Engineering;2013-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3