Affiliation:
1. Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
Abstract
Node localization is a fundamental requirement in underwater sensor networks (UWSNs) due to the ineptness of GPS and other terrestrial localization techniques in the underwater environment. In any UWSN monitoring application, the sensed information produces a better result when it is tagged with location information. However, the deployed nodes in UWSNs are vulnerable to many attacks, and hence, can be compromised by interested parties to generate incorrect location information. Consequently, using the existing localization schemes, the deployed nodes are unable to autonomously estimate the precise location information. In this regard, similar existing schemes for terrestrial wireless sensor networks are not applicable to UWSNs due to its inherent mobility, limited bandwidth availability, strict energy constraints, and high bit-error rates. In this article, we propose
SecRET
, a <underline>Sec</underline>ure <underline>R</underline>ange-based localization scheme empowered by <underline>E</underline>vidence <underline>T</underline>heory for UWSNs. With trust-based computations, the proposed scheme,
SecRET
, enables the unlocalized nodes to select the most reliable set of anchors with low resource consumption. Thus, the proposed scheme is adaptive to many attacks in UWSN environment. NS-3 based performance evaluation indicates that
SecRET
maintains energy-efficiency of the deployed nodes while ensuring efficient and secure localization, despite the presence of compromised nodes under various attacks.
Publisher
Association for Computing Machinery (ACM)
Subject
Software,Computer Science (miscellaneous),Control and Systems Engineering
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献