Explaining abstract counterexamples

Author:

Chaki Sagar1,Groce Alex1,Strichman Ofer2

Affiliation:

1. Carnegie Mellon University, Pittsburgh, PA

2. Technion, Haifa, Israel

Abstract

When a program violates its specification a model checker produces a counterexample that shows an example of undesirable behavior. It is up to the user to understand the error, locate it, and fix the problem. Previous work introduced a technique for explaining and localizing errors based on finding the closest execution to a counterexample, with respect to a distance metric. That approach was applied only to concrete executions of programs. This paper extends and generalizes the approach by combining it with predicate abstraction. Using an abstract state-space increases scalability and makes explanations more informative. Differences between executions are presented in terms of predicates derived from the specification and program, rather than specific changes to variable values. Reasoning to the cause of an error from the factthat in the failing run x < y, but in the successful execution x = y is easier than reasoning from the information that in the failing run y = 239, but in the successful execution y = 232. An abstract explanation is <i>automatically generalized</i> Predicate abstraction has previously been used in model checking purely as a state-space reduction technique. However, an abstraction good enough to enable a model checking tool to find an error is also likely to be useful as an <i>automatically generated high-level description of a state space</i> --- suitable for use by programmers. Results demonstrating the effectiveness of abstract explanations support this claim.

Publisher

Association for Computing Machinery (ACM)

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Localizing faults using verification technique;Journal of Systems and Software;2024-03

2. Real world projects, real faults: evaluating spectrum based fault localization techniques on Python projects;Empirical Software Engineering;2022-08-06

3. Localizing Faults Using Verification Technique;15th Innovations in Software Engineering Conference;2022-02-24

4. Explaining Hyperproperty Violations;Computer Aided Verification;2022

5. A Billion SMT Queries a Day (Invited Paper);Computer Aided Verification;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3