Reading the Room

Author:

DiSalvo Betsy1,Bandaru Dheeraj1,Wang Qiaosi1,Li Hong1,Plötz Thomas1

Affiliation:

1. School of Interactive Computing, Georgia Institute of Technology, Atlanta, USA

Abstract

When in front of a classroom, a skilled teacher can read the room, identifying when students are engaged, frustrated, distracted, etc. In recent years we have seen significant changes in the traditional classroom, with virtual classes becoming a normal learning environment. Reasons for this change are the increased popularity of Massive Open Online Courses (MOOCs) and the disruptions imposed by the ongoing COVID-19 pandemic. However, it is difficult for teachers to read the room in these virtual classrooms, and researchers have begun to look at using sensors to provide feedback to help inform teaching practices. The study presented here sought to ground classroom sensor data in the form of electrodermal activities (EDA) captured using a wrist-worn sensing platform (Empatica E4), with observations about students' emotional engagement in the class. We collected a dataset from eleven students over eight lectures in college-level computer science classes. We trained human annotators who provided ground truth information about student engagement based on in-class observations. Inspired by related work in the field, we implemented an automated data analysis framework, which we used to explore momentary assessments of student engagement in classrooms. Our findings surprised us because we found no significant correlation between the sensor data and our trained observers' data. In this paper, we present our study and framework for automated engagement assessment, and report on our findings that indicate some of the challenges in deploying current technology for real-world, automated momentary assessment of student engagement in the classroom. We offer reflections on our findings and discuss ways forward toward an automated reading the room approach.

Funder

NSF

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture,Human-Computer Interaction

Reference74 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3