Gossip-based aggregation in large dynamic networks

Author:

Jelasity Márk1,Montresor Alberto1,Babaoglu Ozalp1

Affiliation:

1. Università di Bologna, Bologna, Italy

Abstract

As computer networks increase in size, become more heterogeneous and span greater geographic distances, applications must be designed to cope with the very large scale, poor reliability, and often, with the extreme dynamism of the underlying network. Aggregation is a key functional building block for such applications: it refers to a set of functions that provide components of a distributed system access to global information including network size, average load, average uptime, location and description of hotspots, and so on. Local access to global information is often very useful, if not indispensable for building applications that are robust and adaptive. For example, in an industrial control application, some aggregate value reaching a threshold may trigger the execution of certain actions; a distributed storage system will want to know the total available free space; load-balancing protocols may benefit from knowing the target average load so as to minimize the load they transfer. We propose a gossip-based protocol for computing aggregate values over network components in a fully decentralized fashion. The class of aggregate functions we can compute is very broad and includes many useful special cases such as counting, averages, sums, products, and extremal values. The protocol is suitable for extremely large and highly dynamic systems due to its proactive structure---all nodes receive the aggregate value continuously, thus being able to track any changes in the system. The protocol is also extremely lightweight, making it suitable for many distributed applications including peer-to-peer and grid computing systems. We demonstrate the efficiency and robustness of our gossip-based protocol both theoretically and experimentally under a variety of scenarios including node and communication failures.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference29 articles.

1. Barabási A.-L. 2002. Linked: the new science of networks. Perseus Cambridge Mass. Barabási A.-L. 2002. Linked: the new science of networks. Perseus Cambridge Mass.

2. Reaching approximate agreement in the presence of faults

3. Epidemic information dissemination in distributed systems

Cited by 355 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Distributed Gossip-Triggered Control for Robot Swarms With Limited Communication Range;IEEE Transactions on Industrial Electronics;2023-12

2. Diamond-P-vCube: An Eventually Perfect Hierarchical Failure Detector for Asynchronous Distributed Systems;12th Latin-American Symposium on Dependable and Secure Computing;2023-10-16

3. A physical topology for optimizing partition tolerance in consortium blockchains to reach CAP guarantee bound;Transactions on Emerging Telecommunications Technologies;2023-06-23

4. Peer-to-peer deep learning with non-IID data;Expert Systems with Applications;2023-03

5. Gossip Protocols;Distributed Systems;2023-02-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3