Soft typing

Author:

Cartwright Robert1,Fagan Mike1

Affiliation:

1. Rice University, Houston, Texas

Abstract

Type systems are designed to prevent the improper use of program operations. They can be classified as either static or dynamic depending on when they detect type errors. Static type systems detect potential type errors at compile-time and prevent program execution. Dynamic type systems detect type errors at run-time and abort program execution.Static type systems have two important advantages over dynamic type systems. First, they help programmers detect a large class of program errors before execution. Second, they extract information that a compiler can exploit to produce more efficient code. The price paid for these advantages, however, is a loss of expressiveness, generality, and semantic simplicity.This paper presents a generalization of static and dynamic typing---called soft typing ---that combines the best features of both approaches. The key idea underlying soft typing is that a static type checker need not reject programs that contain potential type errors. Instead, the type checker can insert explicit run-time checks around "suspect" arguments of primitive operations, converting dynamically typed programs into statically type-correct form. The inserted run-time checks identify program phrases that may be erroneous. For soft typing to be effective, the type system must avoid inserting unnecessary run-time checks. To accomplish this objective, we have developed an extension of the ML type system supporting union types and recursive types that assigns types to a wider class of programs than ML . We have also developed an algorithm for frugally inserting run-time checks in programs that do not type check.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A gradual type system for Elixir;Journal of Computer Languages;2022-02

2. A Gradual Type System for Elixir;Proceedings of the 24th Brazilian Symposium on Context-Oriented Programming and Advanced Modularity;2020-10-19

3. AjaxScope;ACM Transactions on the Web;2010-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3