Large-scale and Robust Code Authorship Identification with Deep Feature Learning

Author:

Abuhamad Mohammed1,Abuhmed Tamer2,Mohaisen David3,Nyang Daehun4

Affiliation:

1. Loyola University Chicago

2. Sungkyunkwan University

3. University of Central Florida

4. Ewha Womans University

Abstract

Successful software authorship de-anonymization has both software forensics applications and privacy implications. However, the process requires an efficient extraction of authorship attributes. The extraction of such attributes is very challenging, due to various software code formats from executable binaries with different toolchain provenance to source code with different programming languages. Moreover, the quality of attributes is bounded by the availability of software samples to a certain number of samples per author and a specific size for software samples. To this end, this work proposes a deep Learning-based approach for software authorship attribution, that facilitates large-scale, format-independent, language-oblivious, and obfuscation-resilient software authorship identification. This proposed approach incorporates the process of learning deep authorship attribution using a recurrent neural network, and ensemble random forest classifier for scalability to de-anonymize programmers. Comprehensive experiments are conducted to evaluate the proposed approach over the entire Google Code Jam (GCJ) dataset across all years (from 2008 to 2016) and over real-world code samples from 1,987 public repositories on GitHub. The results of our work show high accuracy despite requiring a smaller number of samples per author. Experimenting with source-code, our approach allows us to identify 8,903 GCJ authors, the largest-scale dataset used by far, with an accuracy of 92.3%. Using the real-world dataset, we achieved an identification accuracy of 94.38% for 745 C programmers on GitHub. Moreover, the proposed approach is resilient to language-specifics, and thus it can identify authors of four programming languages (e.g., C, C++, Java, and Python), and authors writing in mixed languages (e.g., Java/C++, Python/C++). Finally, our system is resistant to sophisticated obfuscation (e.g., using C Tigress) with an accuracy of 93.42% for a set of 120 authors. Experimenting with executable binaries, our approach achieves 95.74% for identifying 1,500 programmers of software binaries. Similar results were obtained when software binaries are generated with different compilation options, optimization levels, and removing of symbol information. Moreover, our approach achieves 93.86% for identifying 1,500 programmers of obfuscated binaries using all features adopted in Obfuscator-LLVM tool.

Funder

National Research Foundation of Korea

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,General Computer Science

Reference69 articles.

1. 20120. Stunnix. Retrieved February 2 2021 from http://stunnix.com/. 20120. Stunnix. Retrieved February 2 2021 from http://stunnix.com/.

2. 2020. Hex-Rays. Retrieved February 2 2021 from https://www.hex-rays.com/products/decompiler/. 2020. Hex-Rays. Retrieved February 2 2021 from https://www.hex-rays.com/products/decompiler/.

3. 2020. IDA Pro. Retrieved February 2 2021 from https://www.hex-rays.com/products/ida/. 2020. IDA Pro. Retrieved February 2 2021 from https://www.hex-rays.com/products/ida/.

4. 2020. Radare. Retrieved February 2 2021 from https://www.radare.org/. 2020. Radare. Retrieved February 2 2021 from https://www.radare.org/.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3