Privacy-Preserving Distributed Multi-Task Learning against Inference Attack in Cloud Computing

Author:

Ma Xindi1,Ma Jianfeng1,Kumari Saru2,Wei Fushan3,Shojafar Mohammad4,Alazab Mamoun5

Affiliation:

1. Xidian University, Shaanxi, China

2. Chaudhary Charan Singh University, Ramgarhi, Meerut, Uttar Pradesh, India

3. State Key Laboratory of Mathematical Engineering and Advanced Computing, Zhengzhou, Henan, China

4. University of Surrey, Guildford, UK

5. Charles Darwin University, Casuarina NT, Australia

Abstract

Because of the powerful computing and storage capability in cloud computing, machine learning as a service (MLaaS) has recently been valued by the organizations for machine learning training over some related representative datasets. When these datasets are collected from different organizations and have different distributions, multi-task learning (MTL) is usually used to improve the generalization performance by scheduling the related training tasks into the virtual machines in MLaaS and transferring the related knowledge between those tasks. However, because of concerns about privacy breaches (e.g., property inference attack and model inverse attack), organizations cannot directly outsource their training data to MLaaS or share their extracted knowledge in plaintext, especially the organizations in sensitive domains. In this article, we propose a novel privacy-preserving mechanism for distributed MTL, namely NOInfer, to allow several task nodes to train the model locally and transfer their shared knowledge privately. Specifically, we construct a single-server architecture to achieve the private MTL, which protects task nodes’ local data even if n-1 out of n nodes colluded. Then, a new protocol for the Alternating Direction Method of Multipliers (ADMM) is designed to perform the privacy-preserving model training, which resists the inference attack through the intermediate results and ensures that the training efficiency is independent of the number of training samples. When releasing the trained model, we also design a differentially private model releasing mechanism to resist the membership inference attack. Furthermore, we analyze the privacy preservation and efficiency of NOInfer in theory. Finally, we evaluate our NOInfer over two testing datasets and evaluation results demonstrate that NOInfer efficiently and effectively achieves the distributed MTL.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Key Research and Development Program of Shaanxi

Natural Science Foundation of Shaanxi Province

Shaanxi Provincial Education Department

Fundamental Research Funds for the Central Universities

European Commission

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3