Interpersonal Communication Interconnection in Media Convergence Metaverse

Author:

Wang Xin12,Lv Jianhui3,Shankar Achyut4,Maple Carsten5,Li Keqin6,Li Qing3

Affiliation:

1. Northeastern University, Shenyang, China

2. Dongneng (Shenyang) Energy Engineering Technology Co., Ltd., Shenyang, China

3. Peng Cheng Laboratory, Shenzhen, China

4. University of Warwick, Coventry, United Kingdom of Great Britain and Northern Ireland

5. WMG Group, University of Warwick, Coventry, United Kingdom of Great Britain and Northern Ireland

6. State University of New York at New Paltz, New Paltz, United States

Abstract

The metaverse aims to provide immersive virtual worlds connecting with the physical world. To enable real-time interpersonal communications between users across the globe, the metaverse places high demands on network performance, including low latency, high bandwidth, and fast network speeds. This paper proposes a novel Media Convergence Metaverse Network (MCMN) framework to address these challenges. Specifically, the META controller serves as MCMN's logically centralized control plane, responsible for holistic orchestration across edge sites and end-to-end path computation between metaverse users. We develop a model-free deep reinforcement learning-based metaverse traffic optimization algorithm that learns to route flows while satisfying the Quality of Service (QoS) boundaries. The network slicing engine leverages artificial intelligence and machine learning to create isolated, customized virtual networks tailored for metaverse traffic dynamics on demand. It employs unsupervised and reinforcement learning techniques using network telemetry from the META controller to understand application traffic patterns and train cognitive slicer agents to make quality of service -aware decisions accordingly. Optimized delivery of diverse concurrent media types necessitates routing intelligence to meet distinct requirements while mitigating clashes over a shared infrastructure. Media-aware routing enhances traditional shortest-path approaches by combining topological metrics with workflow sensitivities. We realize an edge-assisted rendering fabric to offload complex processing from bandwidth-constrained endpoints while retaining visual realism. Extensive simulations demonstrate MCMN's superior performance compared to conventional networking paradigms. MCMN shows great promise to enable seamless interconnectivity and ultra-high fidelity communications to unlock the true potential of the metaverse.

Publisher

Association for Computing Machinery (ACM)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3