Affiliation:
1. Chair of EDA, Technical University of Munich, Munich, Germany
2. Chair for ES, Karlsruhe Institute of Technology, Karlsruhe, Germany
Abstract
The continuous technology scaling of integrated circuits results in increasingly higher power densities and operating temperatures. Hence, modern many-core processors require sophisticated thermal and resource management strategies to mitigate these undesirable side effects. A simulation-based evaluation of these strategies is limited by the accuracy of the underlying processor model and the simulation speed. Therefore, we present, for the first time, an field-programmable gate array (FPGA)-based evaluation approach to test and compare thermal and resource management strategies using the combination of benchmark generation, FPGA-based application-specific integrated circuit (ASIC) emulation, and run-time monitoring. The proposed benchmark generation method enables an evaluation of run-time management strategies for applications with various run-time characteristics. Furthermore, the ASIC emulation platform features a novel distributed temperature emulator design, whose overhead scales linearly with the number of integrated cores, and a novel dynamic voltage frequency scaling emulator design, which precisely models the timing and energy overhead of voltage and frequency transitions. In our evaluations, we demonstrate the proposed approach for a tiled many-core processor with 80 cores on four Virtex-7 FPGAs. Additionally, we present the suitability of the platform to evaluate state-of-the-art run-time management techniques with a case study.
Funder
Deutsche Forschungsgemeinschaft
Publisher
Association for Computing Machinery (ACM)
Subject
Hardware and Architecture,Information Systems,Software
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献