Sparse Approximation via Generating Point Sets

Author:

Blum Avrim1,Har-Peled Sariel2,Raichel Benjamin3

Affiliation:

1. Toyota Technological Institute at Chicago, Chicago, IL, USA

2. University of Illinois, Urbana?Champaign, Urbana, IL, USA

3. University of Texas at Dallas, Richardson, TX, USA

Abstract

For a set P of n points in the unit ball b⊆ R d , consider the problem of finding a small subset TP such that its convex-hull ε-approximates the convex-hull of the original set. Specifically, the Hausdorff distance between the convex hull of T and the convex hull of P should be at most ε. We present an efficient algorithm to compute such an ε′-approximation of size k alg , where ε ′ is a function of ε and k alg is a function of the minimum size k opt of such an ε-approximation. Surprisingly, there is no dependence on the dimension d in either of the bounds. Furthermore, every point of P can be ε-approximated by a convex-combination of points of T that is O (1/ε 2 )-sparse. Our result can be viewed as a method for sparse, convex autoencoding: approximately representing the data in a compact way using sparse combinations of a small subset T of the original data. The new algorithm can be kernelized, and it preserves sparsity in the original input.

Funder

NSF

Publisher

Association for Computing Machinery (ACM)

Subject

Mathematics (miscellaneous)

Reference19 articles.

1. P. K. Agarwal S. Har-Peled and K. Varadarajan. 2005. Geometric approximation via coresets. In Combinatorial and Computational Geometry J. E. Goodman J. Pach and E. Welzl (Eds.). Cambridge New York NY. P. K. Agarwal S. Har-Peled and K. Varadarajan. 2005. Geometric approximation via coresets. In Combinatorial and Computational Geometry J. E. Goodman J. Pach and E. Welzl (Eds.). Cambridge New York NY.

2. Approximating extent measures of points

3. Approximating Nash Equilibria and Dense Bipartite Subgraphs via an Approximate Version of Caratheodory's Theorem

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Computing Instance-Optimal Kernels in Two Dimensions;Discrete & Computational Geometry;2024-04-07

2. Sparse convex hull coverage;Computational Geometry;2021-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3