GPGS

Author:

Caruthers L. C.1,van den Bos J.1,van Dam A.2

Affiliation:

1. University of Nijmegen, Nijmegen, The Netherlands

2. Brown University, Providence, Rhode Island

Abstract

GPGS is a subroutine package offering powerful and versatile support for passive and interactive vector graphics, for time-sharing, batch, and stand-alone minicomputer systems. The package is computer, language, and operating system, as well as display device independent. Its key purpose is to allow for transportabiliit of programs and programmers by providing easy to learn, high level features. The applications programmer writes his program once and then executes it on any supported graphics equipment without recompiling or relinking it. Device-independence was implemented by dividing GPGS into a device-independent part invoked by the applications programmer, and internal, "device drivers", one per display device. Like the GSPC "Core System" whose design it influenced, GPGS is a general purpose package. It has a subset of graphics facilities to handle output of line and character primitives with attributes such as line style and character size, and input from interaction tools such as lightpens, keyboards, valuators, and function keys. It also supports 2D and 3D viewin transformationss for clipping and window to viewport mapping, and coordinate transformations.Unlike the GSPC Core System, GPGS also includes a set of basic features for modelling objects which allows definition of device independent masters called seudo picture segment. These are distinguished from normal, device (DPU) dependent pictur segments into which primitives and their attribute-value settings are ordinarily compiled. These masters may be instanced subject to affine transformations (translate, rotate, and scale) to create a typical master-instance hierarchy. The hierarchy may be stored in a disk based library or compiled into a normal picture segment for output to a display device.The images of objects stored in device dependent picture segments may be transformed on the display surface by v port (image) transformations. These typically allow use of hardware transformation capabilities for dragging or tumbling object images.Host/satellite graphics is accommodated by having the device independent part of GPGS in the host and splitting the device drivers across host and satellite. At the source code level it therefore makes no difference on which.configuration a program will be executed.Among the existing implementations are versions written in assembler for the IB 360/370 and the PDP 11, in both stand-alone and satellite mode, and under a variety of operating systems. They support plotters, storage tubes, and high performance refresh displays. FORTRAN based implementations exist for the Univac 1108, the PDP 10, and a Harris minicomputer.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,General Computer Science

Reference9 articles.

1. IBM - Graphics Subroutine Package (GSP) for FORTRAN IV COBOL and PL/I; form GC27-6932. IBM - Graphics Subroutine Package (GSP) for FORTRAN IV COBOL and PL/I; form GC27-6932.

2. The design and implementation of the GINO 3D graphics software package

3. Caruthers L. C. and van Dam A. GPGS User's Tutorial Informatica Faculty of Science University of Nijmegen The Netherlands October 1975. Caruthers L. C. and van Dam A. GPGS User's Tutorial Informatica Faculty of Science University of Nijmegen The Netherlands October 1975.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Evaluation of Standard Graphics Packages;Computer Graphics Forum;1987-12

2. IDECAP Interactive Pictorial Information System for Demographic and Environmental Planning Applications;Computer Graphics Forum;1984-03

3. Computer‐aided teaching of three‐dimensional geometry;International Journal of Mathematical Education in Science and Technology;1983-03

4. Computer graphics: A keyword-indexed bibliography for the years 1976, 1977, and 1978;Computer Graphics and Image Processing;1980-09

5. Status report of the graphic standards planning committee;ACM SIGGRAPH Computer Graphics;1979-08-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3