Diagnosing network disruptions with network-wide analysis

Author:

Huang Yiyi1,Feamster Nick1,Lakhina Anukool2,Xu Jim (Jun)1

Affiliation:

1. Georgia Institute of Technology

2. Guavus Inc.

Abstract

To maintain high availability in the face of changing network conditions, network operators must quickly detect, identify, and react to events that cause network disruptions. One way to accomplish this goal is to monitor routing dynamics, by analyzing routing update streams collected from routers. Existing monitoring approaches typically treat streams of routing updates from different routers as independent signals, and report only the "loud" events (i.e., events that involve large volume of routing messages). In this paper, we examine BGP routing data from all routers in the Abilene backbone for six months and correlate them with a catalog of all known disruptions to its nodes and links. We find that many important events are not loud enough to be detected from a single stream. Instead, they become detectable only when multiple BGP update streams are simultaneously examined. This is because routing updates exhibit network-wide dependencies. This paper proposes using network-wide analysis of routing information to diagnose (i.e., detect and identify) network disruptions. To detect network disruptions, we apply a multivariate analysis technique on dynamic routing information, (i.e., update traffic from all the Abilene routers) and find that this technique can detect every reported disruption to nodes and links within the network with a low rate of false alarms. To identify the type of disruption, we jointly analyze both the network-wide static configuration and details in the dynamic routing updates; we find that our method can correctly explain the scenario that caused the disruption. Although much work remains to make network-wide analysis of routing data operationally practical, our results illustrate the importance and potential of such an approach.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture,Software

Reference29 articles.

1. Abilene operational mailing list. https://listserv.indiana.edu/archives/abilene-ops-l.html. Abilene operational mailing list. https://listserv.indiana.edu/archives/abilene-ops-l.html.

2. A signal analysis of network traffic anomalies

3. Measuring the effects of internet path faults on reactive routing

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Matrix Profile data mining for BGP anomaly detection;Computer Networks;2024-04

2. On the extent of correlation in BGP updates in the Internet and what it tells us about locality of BGP routing events;Computer Communications;2013-09

3. Network Management: Fault Management, Performance Management, and Planned Maintenance;Computer Communications and Networks;2010

4. The need for simulation in evaluating anomaly detectors;ACM SIGCOMM Computer Communication Review;2008-01-30

5. WebClass;ACM SIGCOMM Computer Communication Review;2008-01-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3