Flow-level stability of data networks with non-convex and time-varying rate regions

Author:

Liu Jiaping1,Proutière Alexandre2,Yi Yung1,Chiang Mung1,Poor H. Vincent1

Affiliation:

1. Princeton University

2. Radio Communication Systems Electrum

Abstract

In this paper we characterize flow-level stochastic stability for networks with non-convex or time-varying rate regions underresource allocation based on utility maximization. Similar to prior works on flow-level stability, we consider exogenous data arrivals with finite workloads. However, to model many realistic situations, the rate region, which constrains the feasibility of resource allocation, may be either non-convex or time-varying. When the rate region is fixed but non-convex, we derive sufficient and necessary conditions for stability, which coincide when the set of allocated rate vectors has continuous contours. When the rate region is time-varying according to some stationary, ergodic process, we derive the precise stability region. In both cases,the size of the stability region depends on the resource allocation policy, in particular, on the fairness parameter in ∝-fair utility maximization. This is in sharp contrast with the substantial existing literature on stability under fixed and convex rate regions, in which the stability region coincides with the rate region for many utility-based resource allocation schemes, independently of the value of the fairness parameter. We further investigate the tradeoff between fairness and stability when rate region is non-convex or time-varying. Numerical examples of both wired and wireless networks are provided to illustrate the new stability regions and tradeoffs proved in the paper.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3