TARA-Net: A Fusion Network for Detecting Takeaway Rider Accidents

Author:

He Yifan1,Li Zhao2,Fu Lei2,Wang Anhui2,Zhang Peng2,Zhou Shuigeng1,Zhang Ji3,Yu Ting4

Affiliation:

1. Fudan University, Shanghai, China

2. Alibaba Group, Hangzhou, China

3. The University of Southern Queensland, Queesland, Australia

4. Zhejiang Lab, Hangzhou, China

Abstract

In the emerging business of food delivery, rider traffic accidents raise financial cost and social traffic burden. Although there has been much effort on traffic accident forecasting using temporal-spatial prediction models, none of the existing work studies the problem of detecting the takeaway rider accidents based on food delivery trajectory data. In this article, we aim to detect whether a takeaway rider meets an accident on a certain time period based on trajectories of food delivery and riders’ contextual information. The food delivery data has a heterogeneous information structure and carries contextual information such as weather and delivery history, and trajectory data are collected as a spatial-temporal sequence. In this article, we propose a TakeAway Rider Accident detection fusion network TARA-Net to jointly model these heterogeneous and spatial-temporal sequence data. We utilize the residual network to extract basic contextual information features and take advantage of a transformer encoder to capture trajectory features. These embedding features are concatenated into a pyramidal feed-forward neural network. We jointly train the above three components to combine the benefits of spatial-temporal trajectory data and sparse basic contextual data for early detecting traffic accidents. Furthermore, although traffic accidents rarely happen in food delivery, we propose a sampling mechanism to alleviate the imbalance of samples when training the model. We evaluate the model on a transportation mode classification dataset Geolife and a real-world Ele.me dataset with over 3 million riders. The experimental results show that the proposed model is superior to the state-of-the-art.

Funder

Open Research Program of Zhejiang Lab

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Theoretical Computer Science

Reference68 articles.

1. Jimmy Lei Ba Jamie Ryan Kiros and Geoffrey E. Hinton. 2016. Layer normalization. arXiv: 1607.06450. http://arxiv/org/abs/1607.06450.

2. A Gesture Recognition System for Detecting Behavioral Patterns of ADHD

3. Feed-forward neural networks

4. Trajectory Data Classification

5. Discovering popular routes from trajectories

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3