Eternal-thing 2.0: Analog-Trojan-resilient Ripple-less Solar Harvesting System for Sustainable IoT

Author:

Ram Saswat Kumar1ORCID,Sahoo Sauvagya Ranjan2ORCID,Das Banee Bandana3ORCID,Mahapatra Kamalakanta4ORCID,Mohanty Saraju P.5ORCID

Affiliation:

1. Department of Electronics and Communication Engineering, SRM University, Andhra Pradesh, India

2. Analog Design Engineer, Marquee Semiconductor, Bhubaneswar, Odisha, India

3. Department of Computer Science and Engineering, SRM University, Andhra Pradesh, India

4. National Institute of Technology, Rourkela, Odisha, India

5. University of North Texas, Denton, Texas, USA

Abstract

Recently, harvesting natural energy is gaining more attention than other conventional approaches for sustainable IoT. System on chip power requirement for the internet of things (IoT) and generating higher voltages on chip is a massive challenge for on-chip peripherals and systems. In this article, an on-chip reliable energy-harvesting system (EHS) is designed for IoT with an inductor-free methodology. The control section monitors the computational load and the recharging of the battery/super-capacitor. An efficient maximum power point tracking algorithm is also used to avoid quiescent power consumption. The reliability of the proposed EHS is improved by using an aging tolerant ring oscillator. The effect of Trojan on the performance of energy-harvesting system is analyzed, and proper detection and mitigation mechanism is proposed. Finally, the proposed ripple mitigation techniques further improves the performance of the aging sensor. The proposed EHS is designed and simulated in CMOS 90-nm technology. The output voltage is in the range of 3–3.55 V with an input 1–1.5 V with a power throughput of 0–22 μW. The EHS consumes power under the ultra-low-power requirements of IoT smart nodes.

Funder

Special Manpower Development Program for Chips to System Design

Publisher

Association for Computing Machinery (ACM)

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. iTPM: Exploring PUF-based Keyless TPM for Security-by-Design of Smart Electronics;2023 IEEE Computer Society Annual Symposium on VLSI (ISVLSI);2023-06-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3