Supervised Clustering of Persian Handwritten Images Using Regularization and Dimension Reduction Methods

Author:

Moradnia Sajedeh1,Golalizadeh Mousa1

Affiliation:

1. Department of Statistics, Tarbiat Modares University, Tehran, Iran, Iran

Abstract

Clustering, as a fundamental exploratory data technique, not only is used to discover patterns and structures in complex data set, but also is utilized to group variables in high-dimensional data analysis. Dimension reduction through clustering helps identify important variables and reduce data dimensions without losing significant information. High-dimensional image data sets, such as Persian handwritten images have numerous pixels, making statistical inference difficult. Such high dimensionality property pose challenges for analysis and processing, requiring specialized techniques like clustering to extract information. Incorporating response variable information enhances clustering analysis, transforming it into a supervised method. This article evaluates a supervised clustering approach using Ridge and Lasso penalties, comparing them in analyzing a real data set while identifying important variables. We demonstrate that despite choosing a small number of variables as important variables, Lasso penalty performed relatively well in predicting the labels of new observations for this multi-class data set.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference36 articles.

1. Erin L. Allwein , Robert E. Schapire , and Yoram Singer . 2000. Reducing Multiclass to Binary: A Unifying Approach for Margin Classifiers. Journal of Machine Learning Research. 1(Dec . 2000 ), 113-141. Erin L. Allwein, Robert E. Schapire, and Yoram Singer. 2000. Reducing Multiclass to Binary: A Unifying Approach for Margin Classifiers. Journal of Machine Learning Research. 1(Dec. 2000), 113-141.

2. Howard D. Bondell and Brian J . Reich . 2008 . Simultaneous Regression Shrinkage, Variable Selection , and Supervised Clustering of Predictors with OSCAR. Biometrics . 64(Mar. 2008), 115-123. Howard D. Bondell and Brian J. Reich. 2008. Simultaneous Regression Shrinkage, Variable Selection, and Supervised Clustering of Predictors with OSCAR. Biometrics. 64(Mar. 2008), 115-123.

3. Optimization Methods for Large-Scale Machine Learning

4. Peter Bühlmann , and Sara Van De Geer . 2011. Statistics for High-Dimensional Data: Methods, Theory and Applications . Springer Science and Business Media , New York . Peter Bühlmann, and Sara Van De Geer. 2011. Statistics for High-Dimensional Data: Methods, Theory and Applications. Springer Science and Business Media, New York.

5. Charbuty, Bahzad, and Adnan Abdulazeez . 2021. Classification Based on Decision Tree Algorithm for Machine Learning. Journal of Applied Science and Technology Trends. 2(Mar 2021 ), 20-28. Charbuty, Bahzad, and Adnan Abdulazeez. 2021. Classification Based on Decision Tree Algorithm for Machine Learning. Journal of Applied Science and Technology Trends. 2(Mar 2021), 20-28.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3