Reflecting on Random Generation

Author:

Goldstein Harrison1ORCID,Frohlich Samantha2ORCID,Wang Meng2ORCID,Pierce Benjamin C.1ORCID

Affiliation:

1. University of Pennsylvania, USA

2. University of Bristol, UK

Abstract

Expert users of property-based testing often labor to craft random generators that encode detailed knowledge about what it means for a test input to be valid and interesting. Fortunately, the fruits of this labor can also be put to other uses. In the bidirectional programming literature, for example, generators have been repurposed as validity checkers, while Python's Hypothesis library uses the same structures for shrinking and mutating test inputs. To unify and generalize these uses and many others, we propose reflective generators, a new foundation for random data generators that can "reflect" on an input value to calculate the random choices that could have been made to produce it. Reflective generators combine ideas from two existing abstractions: free generators and partial monadic profunctors. They can be used to implement and enhance the aforementioned shrinking and mutation algorithms, generalizing them to work for any values that can be produced by the generator, not just ones for which a trace of the generator's execution is available. Beyond shrinking and mutation, reflective generators generalize a published algorithm for example-based generation, and they can also be used as checkers, partial value completers, and other kinds of test data producers.

Funder

National Science Foundation

Engineering and Physical Sciences Research Council

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,Software

Reference43 articles.

1. NAUTILUS: Fishing for Deep Bugs with Grammars

2. Rudy Matela Braquehais. 2017. Tools for Discovery Refinement and Generalization of Functional Properties by Enumerative Testing. Oct. http://etheses.whiterose.ac.uk/19178/ Publisher: University of York

3. PL and HCI

4. Functional programming for modular Bayesian inference

5. QuickCheck

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3