Affiliation:
1. National University of Singapore, Singapore
Abstract
Devices with integrated Wi-Fi chips broadcast beacons for network connection management purposes. Such information can be captured with inexpensive monitors and used to extract user behavior. To understand the behavior of visitors, we deployed our passive monitoring system---CrowdProbe, in a multi-floor museum for six months. We used a Hidden Markov Models (HMM) based trajectory inference algorithm to infer crowd movement using more than 1.7 million opportunistically obtained probe request frames.
However, as more devices adopt schemes to randomize their MAC addresses in the passive probe session to protect user privacy, it becomes more difficult to track crowd and understand their behavior. In this paper, we try to make use of historical transition probability to reason about the movement of those randomized devices with spatial and temporal constraints. With CrowdProbe, we are able to achieve sufficient accuracy to understand the movement of visitors carrying devices with randomized MAC addresses.
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Networks and Communications,Hardware and Architecture,Human-Computer Interaction
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献