Affiliation:
1. Grupo de Interé en Sistemas de Computación, Departmento de Informática, Universidad Nacional de San Luis, Ejército de los Andes 950 - Local 106, 5700 - San Luis - Argentina
Abstract
This paper shows an approach to find quasi-optimal solutions to the first optimization stage of parallel program tasks allocation problem, in an internet distributed system. The user initiates program execution from an arbitrary node in an arbitrary cluster, the parallel tasks comprising the program migrate to quasi-optimal clusters using an strategy that tries to minimize intercluster traffic of the parallel program execution.Genetic algorithms (GAs) [11] are used to provide a set of timely, quasi-optimal solutions.
Publisher
Association for Computing Machinery (ACM)