Symbolic value-flow static analysis: deep, precise, complete modeling of Ethereum smart contracts

Author:

Smaragdakis Yannis1,Grech Neville2,Lagouvardos Sifis1,Triantafyllou Konstantinos1,Tsatiris Ilias1

Affiliation:

1. University of Athens, Greece

2. University of Malta, Malta

Abstract

We present a static analysis approach that combines concrete values and symbolic expressions. This symbolic value-flow (“symvalic”) analysis models program behavior with high precision, e.g., full path sensitivity. To achieve deep modeling of program semantics, the analysis relies on a symbiotic relationship between a traditional static analysis fixpoint computation and a symbolic solver: the solver does not merely receive a complex “path condition” to solve, but is instead invoked repeatedly (often tens or hundreds of thousands of times), in close cooperation with the flow computation of the analysis. The result of the symvalic analysis architecture is a static modeling of program behavior that is much more complete than symbolic execution, much more precise than conventional static analysis, and domain-agnostic: no special-purpose definition of anti-patterns is necessary in order to compute violations of safety conditions with high precision. We apply the analysis to the domain of Ethereum smart contracts. This domain represents a fundamental challenge for program analysis approaches: despite numerous publications, research work has not been effective at uncovering vulnerabilities of high real-world value. In systematic comparison of symvalic analysis with past tools, we find significantly increased completeness (shown as 83-96% statement coverage and more true error reports) combined with much higher precision, as measured by rate of true positive reports. In terms of real-world impact, since the beginning of 2021, the analysis has resulted in the discovery and disclosure of several critical vulnerabilities, over funds in the many millions of dollars. Six separate bug bounties totaling over $350K have been awarded for these disclosures.

Funder

Hellenic Foundation for Research and Innovation

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,Software

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Consolidating Smart Contracts with Behavioral Contracts;Proceedings of the ACM on Programming Languages;2024-06-20

2. Falcon: A Fused Approach to Path-Sensitive Sparse Data Dependence Analysis;Proceedings of the ACM on Programming Languages;2024-06-20

3. Involuntary Transfer: A Vulnerability Pattern in Smart Contracts;IEEE Access;2024

4. TransRacer: Function Dependence-Guided Transaction Race Detection for Smart Contracts;Proceedings of the 31st ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering;2023-11-30

5. AChecker: Statically Detecting Smart Contract Access Control Vulnerabilities;2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE);2023-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3