Affiliation:
1. School of Software Technology, Zhejiang University, Hangzhou, Zhejiang, China
2. Software Engineering Application Technology Lab, Huawei, Hangzhou, Zhejiang, China
3. Singapore Management University, Singapore
4. Zhejiang University, Hangzhou, Zhejiang, China
5. Queen’s University, Kingston, Canada
Abstract
Change-level defect prediction is widely referred to as just-in-time (JIT) defect prediction since it identifies a defect-inducing change at the check-in time, and researchers have proposed many approaches based on the language-independent change-level features. These approaches can be divided into two types: supervised approaches and unsupervised approaches, and their effectiveness has been verified on Java or C++ projects. However, whether the language-independent change-level features can effectively identify the defects of JavaScript projects is still unknown. Additionally, many researches have confirmed that supervised approaches outperform unsupervised approaches on Java or C++ projects when considering inspection effort. However, whether supervised JIT defect prediction approaches can still perform best on JavaScript projects is still unknown. Lastly, prior proposed change-level features are programming language–independent, whether programming language–specific change-level features can further improve the performance of JIT approaches on identifying defect-prone changes is also unknown.
To address the aforementioned gap in knowledge, in this article, we collect and label the top-20 most starred JavaScript projects on GitHub. JavaScript is an extremely popular and widely used programming language in the industry. We propose five JavaScript-specific change-level features and conduct a large-scale empirical study (i.e., involving a total of 176,902 changes) and find that (1) supervised JIT defect prediction approaches (i.e., CBS+) still statistically significantly outperform unsupervised approaches on JavaScript projects when considering inspection effort; (2) JavaScript-specific change-level features can further improve the performance of approach built with language-independent features on identifying defect-prone changes; (3) the change-level features in the dimension of size (i.e., LT), diffusion (i.e., NF), and JavaScript-specific (i.e., SO and TC) are the most important features for indicating the defect-proneness of a change on JavaScript projects; and (4) project-related features (i.e., Stars, Branches, Def Ratio, Changes, Files, Defective, and Forks) have a high association with the probability of a change to be a defect-prone one on JavaScript projects.
Funder
National Science Foundation of China
Key Research and Development Program of Zhejiang Province
National Research Foundation, Singapore
Publisher
Association for Computing Machinery (ACM)
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献