Just-In-Time Defect Prediction on JavaScript Projects: A Replication Study

Author:

Ni Chao1ORCID,Xia Xin2ORCID,Lo David3,Yang Xiaohu4,Hassan Ahmed E.5

Affiliation:

1. School of Software Technology, Zhejiang University, Hangzhou, Zhejiang, China

2. Software Engineering Application Technology Lab, Huawei, Hangzhou, Zhejiang, China

3. Singapore Management University, Singapore

4. Zhejiang University, Hangzhou, Zhejiang, China

5. Queen’s University, Kingston, Canada

Abstract

Change-level defect prediction is widely referred to as just-in-time (JIT) defect prediction since it identifies a defect-inducing change at the check-in time, and researchers have proposed many approaches based on the language-independent change-level features. These approaches can be divided into two types: supervised approaches and unsupervised approaches, and their effectiveness has been verified on Java or C++ projects. However, whether the language-independent change-level features can effectively identify the defects of JavaScript projects is still unknown. Additionally, many researches have confirmed that supervised approaches outperform unsupervised approaches on Java or C++ projects when considering inspection effort. However, whether supervised JIT defect prediction approaches can still perform best on JavaScript projects is still unknown. Lastly, prior proposed change-level features are programming language–independent, whether programming language–specific change-level features can further improve the performance of JIT approaches on identifying defect-prone changes is also unknown. To address the aforementioned gap in knowledge, in this article, we collect and label the top-20 most starred JavaScript projects on GitHub. JavaScript is an extremely popular and widely used programming language in the industry. We propose five JavaScript-specific change-level features and conduct a large-scale empirical study (i.e., involving a total of 176,902 changes) and find that (1) supervised JIT defect prediction approaches (i.e., CBS+) still statistically significantly outperform unsupervised approaches on JavaScript projects when considering inspection effort; (2) JavaScript-specific change-level features can further improve the performance of approach built with language-independent features on identifying defect-prone changes; (3) the change-level features in the dimension of size (i.e., LT), diffusion (i.e., NF), and JavaScript-specific (i.e., SO and TC) are the most important features for indicating the defect-proneness of a change on JavaScript projects; and (4) project-related features (i.e., Stars, Branches, Def Ratio, Changes, Files, Defective, and Forks) have a high association with the probability of a change to be a defect-prone one on JavaScript projects.

Funder

National Science Foundation of China

Key Research and Development Program of Zhejiang Province

National Research Foundation, Singapore

Publisher

Association for Computing Machinery (ACM)

Subject

Software

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3