A survey on participant selection for federated learning in mobile networks

Author:

Soltani Behnaz1,Haghighi Venus1,Mahmood Adnan1,Sheng Quan Z.1,Yao Lina2

Affiliation:

1. Macquarie University, Sydney, Australia

2. University of New South Wales, Sydney, Australia

Publisher

ACM

Reference30 articles.

1. Joost Verbraeken , Matthijs Wolting , Jonathan Katzy , Jeroen Kloppenburg , Tim Verbelen , and Jan S Rellermeyer . A survey on distributed machine learning. ACM Computing Surveys (CSUR), 53(2):1--33 , 2020 . Joost Verbraeken, Matthijs Wolting, Jonathan Katzy, Jeroen Kloppenburg, Tim Verbelen, and Jan S Rellermeyer. A survey on distributed machine learning. ACM Computing Surveys (CSUR), 53(2):1--33, 2020.

2. Brendan McMahan , Eider Moore , Daniel Ramage , Seth Hampson , and Blaise Aguera y Arcas . Communication-efficient learning of deep networks from decentralized data. In Artificial intelligence and statistics, pages 1273--1282 . PMLR , 2017 . Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas. Communication-efficient learning of deep networks from decentralized data. In Artificial intelligence and statistics, pages 1273--1282. PMLR, 2017.

3. Bing Luo , Wenli Xiao , Shiqiang Wang , Jianwei Huang , and Leandros Tassiulas . Tackling system and statistical heterogeneity for federated learning with adaptive client sampling . pages 1 -- 10 , 2022 . Bing Luo, Wenli Xiao, Shiqiang Wang, Jianwei Huang, and Leandros Tassiulas. Tackling system and statistical heterogeneity for federated learning with adaptive client sampling. pages 1--10, 2022.

4. Xiang Li , Kaixuan Huang , Wenhao Yang , Shusen Wang , and Zhihua Zhang . On the convergence of fedavg on non-iid data. arXiv preprint arXiv:1907.02189 , 2019 . Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On the convergence of fedavg on non-iid data. arXiv preprint arXiv:1907.02189, 2019.

5. Optimizing Federated Learning on Non-IID Data with Reinforcement Learning

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A comprehensive survey on client selection strategies in federated learning;Computer Networks;2024-09

2. Adaptive client selection and model aggregation for heterogeneous federated learning;Multimedia Systems;2024-07-21

3. DCFL: Non-IID Awareness Dataset Condensation Aided Federated Learning;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

4. FedAEB: Deep Reinforcement Learning Based Joint Client Selection and Resource Allocation Strategy for Heterogeneous Federated Learning;IEEE Transactions on Vehicular Technology;2024-06

5. FedZero: Leveraging Renewable Excess Energy in Federated Learning;The 15th ACM International Conference on Future and Sustainable Energy Systems;2024-05-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3