1. Joost Verbraeken , Matthijs Wolting , Jonathan Katzy , Jeroen Kloppenburg , Tim Verbelen , and Jan S Rellermeyer . A survey on distributed machine learning. ACM Computing Surveys (CSUR), 53(2):1--33 , 2020 . Joost Verbraeken, Matthijs Wolting, Jonathan Katzy, Jeroen Kloppenburg, Tim Verbelen, and Jan S Rellermeyer. A survey on distributed machine learning. ACM Computing Surveys (CSUR), 53(2):1--33, 2020.
2. Brendan McMahan , Eider Moore , Daniel Ramage , Seth Hampson , and Blaise Aguera y Arcas . Communication-efficient learning of deep networks from decentralized data. In Artificial intelligence and statistics, pages 1273--1282 . PMLR , 2017 . Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas. Communication-efficient learning of deep networks from decentralized data. In Artificial intelligence and statistics, pages 1273--1282. PMLR, 2017.
3. Bing Luo , Wenli Xiao , Shiqiang Wang , Jianwei Huang , and Leandros Tassiulas . Tackling system and statistical heterogeneity for federated learning with adaptive client sampling . pages 1 -- 10 , 2022 . Bing Luo, Wenli Xiao, Shiqiang Wang, Jianwei Huang, and Leandros Tassiulas. Tackling system and statistical heterogeneity for federated learning with adaptive client sampling. pages 1--10, 2022.
4. Xiang Li , Kaixuan Huang , Wenhao Yang , Shusen Wang , and Zhihua Zhang . On the convergence of fedavg on non-iid data. arXiv preprint arXiv:1907.02189 , 2019 . Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On the convergence of fedavg on non-iid data. arXiv preprint arXiv:1907.02189, 2019.
5. Optimizing Federated Learning on Non-IID Data with Reinforcement Learning