Clustering Heterogeneous Data Values for Data Quality Analysis

Author:

Wenz Viola1ORCID,Kesper Arno1ORCID,Taentzer Gabriele1ORCID

Affiliation:

1. Philipps-Universität Marburg, Germany

Abstract

Data is of high quality if it is fit for its intended purpose. Data heterogeneity can be a major quality problem, as quality aspects such as understandability and consistency can be compromised. Heterogeneity of data values is particularly common when data is manually entered by different people using inadequate control rules. In this case, syntactic and semantic heterogeneity often go hand in hand. Heterogeneity of data values may be a direct result of problems in the acquisition process, quality problems of the underlying data model, or possibly erroneous data transformations. For example, in the cultural heritage domain, it is common to analyze data fields by manually searching lists of data values sorted alphabetically or by number of occurrences. Additionally, search functions such as regular expression matching are used to detect specific patterns. However, this requires a priori knowledge and technical skills that domain experts often do not have. Since such datasets often contain thousands of values, the entire process is very time-consuming. Outliers or subtle differences between values that may be critical to data quality can be easily overlooked. To improve this process of analyzing the quality of data values, we propose a bottom-up human-in-the-loop approach that clusters values of a data field according to syntactic similarity. The clustering is intended to help domain experts explore the heterogeneity of values in a data field and can be configured by domain experts according to their domain knowledge. The overview of the syntactic diversity of the data values gives an impression of the rules and practices of data acquisition as well as their violations. From this, experts can infer potential quality issues with the data acquisition process and system, as well as the data model and data transformations. We outline a proof-of-concept implementation of the approach. Our evaluation found that clustering adds value to data quality analysis, especially for detecting quality problems in data models.

Publisher

Association for Computing Machinery (ACM)

Subject

Information Systems and Management,Information Systems

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Integration Approaches for Heterogeneous Big Data: A Survey;Cybernetics and Information Technologies;2024-03-01

2. AI-Powered Data Governance: A Cutting-Edge Method for Ensuring Data Quality for Machine Learning Applications;2024 Second International Conference on Emerging Trends in Information Technology and Engineering (ICETITE);2024-02-22

3. Putting Sense into Incomplete Heterogeneous Data with Hypergraph Clustering Analysis;Lecture Notes in Computer Science;2024

4. Current Challenges of Big Data Quality Management in Big Data Governance: A Literature Review;Lecture Notes on Data Engineering and Communications Technologies;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3