Improving Worst-case TSN Communication Times of Large Sensor Data Samples by Exploiting Synchronization

Author:

Peeck Jonas1ORCID,Ernst Rolf1ORCID

Affiliation:

1. TU Braunschweig, Germany

Abstract

Higher levels of automated driving also require a more sophisticated environmental perception. Therefore, an increasing number of sensors transmit their data samples as frame bursts to other applications for further processing. As a vehicle has to react to its environment in time, such data is subject to safety-critical latency constraints. To keep up with the resulting data rates, there is an ongoing transition to a Time-Sensitive Networking (TSN)-based communication backbone. However, the use of TSN-related industry standards does not match the automotive requirements of large timely sensor data transmission, nor it offers benefits on time-critical transmissions of single control data packets. By using the full data rate of prioritized IEEE 802.1Q Ethernet, giving time guarantees on large data samples is possible, but with strongly degraded results due to data collision. Resolving such collisions with time-aware shaping comes with significant overhead. Hence, rather than optimizing the parameters of the existing protocol, we propose a system design that synchronizes the transmission times of sensor data samples. This limits network protocol complexity and hardware requirements by avoiding tight time synchronization and time-aware shaping. We demonstrate that individual sensor data samples are transmitted without significant interference, exclusively at full Ethernet data rate. We provide a synchronous event model together with a straightforward response time analysis for synchronous multi-frame sample transmissions. The results show that worst-case latencies of such sample communication, in contrast to non-synchronized approaches, are close to their theoretical minimum as well as to simulative results while keeping the overall network utilization high.

Funder

AUTOtech.agil

Federal Ministry of Education and Research of Germany

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

Reference35 articles.

1. IEEE approved draft standard for local and metropolitan area networks - media access control (MAC) bridges and virtual bridged local area networks amendment: Enhancements for scheduled traffic;IEEE P802.1Qbv/D3.1, September 2015,2015

2. IEEE Standard for Ethernet Amendment 5: Specification and Management Parameters for Interspersing Express Traffic

3. IEEE Standard for Local and Metropolitan Area Network--Bridges and Bridged Networks

4. IEC/IEEE International Standard - Precision Clock Synchronization Protocol for Networked Measurement and Control Systems

5. 2022. OMNet++ Discrete Event Simulator. https://omnetpp.org/

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3