Auto-vectorization of interleaved data for SIMD

Author:

Nuzman Dorit1,Rosen Ira1,Zaks Ayal1

Affiliation:

1. IBM Haifa Labs, Haifa, Israel

Abstract

Most implementations of the Single Instruction Multiple Data (SIMD) model available today require that data elements be packed in vector registers. Operations on disjoint vector elements are not supported directly and require explicit data reorganization manipulations. Computations on non-contiguous and especially interleaved data appear in important applications, which can greatly benefit from SIMD instructions once the data is reorganized properly. Vectorizing such computations efficiently is therefore an ambitious challenge for both programmers and vectorizing compilers. We demonstrate an automatic compilation scheme that supports effective vectorization in the presence of interleaved data with constant strides that are powers of 2, facilitating data reorganization. We demonstrate how our vectorization scheme applies to dominant SIMD architectures, and present experimental results on a wide range of key kernels, showing speedups in execution time up to 3.7 for interleaving levels (stride) as high as 8.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Reference39 articles.

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Autovesk: Automatic Vectorized Code Generation from Unstructured Static Kernels Using Graph Transformations;ACM Transactions on Architecture and Code Optimization;2023-12-15

2. Fast Instruction Selection for Fast Digital Signal Processing;Proceedings of the 28th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 4;2023-03-25

3. Parsimony: Enabling SIMD/Vector Programming in Standard Compiler Flows;Proceedings of the 21st ACM/IEEE International Symposium on Code Generation and Optimization;2023-02-17

4. Custom High-Performance Vector Code Generation for Data-Specific Sparse Computations;Proceedings of the International Conference on Parallel Architectures and Compilation Techniques;2022-10-08

5. COX : Exposing CUDA Warp-level Functions to CPUs;ACM Transactions on Architecture and Code Optimization;2022-09-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3