Profile-guided proactive garbage collection for locality optimization

Author:

Chen Wen-ke1,Bhansali Sanjay1,Chilimbi Trishul1,Gao Xiaofeng2,Chuang Weihaw2

Affiliation:

1. Microsoft Research, Redmond, WA

2. University of California at San Diego, La Jolla, CA

Abstract

Many applications written in garbage collected languages have large dynamic working sets and poor data locality. We present a new system for continuously improving program data locality at run time with low overhead. Our system proactively reorganizes the heap by leveraging the garbage collector and uses profile information collected through a low-overhead mechanism to guide the reorganization at run time. The key contributions include making a case that garbage collection should be viewed as a proactive technique for improving data locality by triggering garbage collection for locality optimization independently of normal garbage collection for space, combining page and cache locality optimization in the same system, and demonstrating that sampling provides sufficiently detailed data access information to guide both page and cache locality optimization with low runtime overhead. We present experimental results obtained by modifying a commercial, state-of-the-art garbage collector to support our claims. Independently triggering garbage collection for locality optimization significantly improved optimizations benefits. Combining page and cache locality optimizations in the same system provided larger average execution time improvements (17%) than either alone (page 8%, cache 7%). Finally, using sampling limited profiling overhead to less than 3%, on average.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Managed Memory System for Micro Controllers with NOR Flash Memory;Proceedings of the 2024 ACM SIGPLAN International Symposium on Memory Management;2024-06-20

2. OJXPerf;Proceedings of the 44th International Conference on Software Engineering;2022-05-21

3. Improving program locality in the GC using hotness;Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation;2020-06-06

4. Runtime Engine for Dynamic Profile Guided Stride Prefetching;Journal of Computer Science and Technology;2008-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3