Free-Me

Author:

Guyer Samuel Z.1,McKinley Kathryn S.2,Frampton Daniel3

Affiliation:

1. Tufts University

2. The University of Texas at Austin

3. Australian National University

Abstract

Garbage collection has proven benefits, including fewer memory related errors and reduced programmer effort. Garbage collection, however, trades space for time. It reclaims memory only when it is invoked: invoking it more frequently reclaims memory quickly, but incurs a significant cost; invoking it less frequently fills memory with dead objects. In contrast, explicit memory management provides prompt low cost reclamation, but at the expense of programmer effort.This work comes closer to the best of both worlds by adding novel compiler and runtime support for compiler inserted frees to a garbage-collected system. The compiler's free-me analysis identifies when objects become unreachable and inserts calls to free. It combines a lightweight pointer analysis with liveness information that detects when short-lived objects die. Our approach differs from stack and region allocation in two crucial ways. First, it frees objects incrementally exactly when they become unreachable, instead of based on program scope. Second, our system does not require allocation-site lifetime homogeneity, and thus frees objects on some paths and not on others. It also handles common patterns: it can free objects in loops and objects created by factory methods.We evaluate free() variations for free-list and bump-pointer allocators. Explicit freeing improves performance by promptly reclaiming objects and reducing collection load. Compared to marksweep alone, free-me cuts total time by 22% on average, collector time by 50% to 70%, and allows programs to run in 17% less memory. This combination retains the software engineering benefits of garbage collection while increasing space efficiency and improving performance, and thus is especially appealing for real-time and space constrained systems.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Gerenuk;Proceedings of the 27th ACM Symposium on Operating Systems Principles;2019-10-27

2. A Story of Parametric Trace Slicing, Garbage and Static Analysis;Electronic Proceedings in Theoretical Computer Science;2017-08-23

3. Elephant tracks;ACM SIGPLAN Notices;2013-12-04

4. Light‐weight resource leak testing based on finalisers;IET Software;2013-12

5. Elephant tracks;Proceedings of the 2013 international symposium on memory management;2013-06-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3