Boosting the performance of Web search engines

Author:

Fagni Tiziano1,Perego Raffaele1,Silvestri Fabrizio1,Orlando Salvatore2

Affiliation:

1. Consiglio Nazionale delle Ricerche (CNR), Pisa, Italy

2. Università Ca' Foscari di Venezia, Mestre (VE), Italy

Abstract

This article discusses efficiency and effectiveness issues in caching the results of queries submitted to a Web search engine (WSE). We propose SDC (Static Dynamic Cache), a new caching strategy aimed to efficiently exploit the temporal and spatial locality present in the stream of processed queries. SDC extracts from historical usage data the results of the most frequently submitted queries and stores them in a static , read-only portion of the cache. The remaining entries of the cache are dynamically managed according to a given replacement policy and are used for those queries that cannot be satisfied by the static portion. Moreover, we improve the hit ratio of SDC by using an adaptive prefetching strategy, which anticipates future requests by introducing a limited overhead over the back-end WSE. We experimentally demonstrate the superiority of SDC over purely static and dynamic policies by measuring the hit ratio achieved on three large query logs by varying the cache parameters and the replacement policy used for managing the dynamic part of the cache. Finally, we deploy and measure the throughput achieved by a concurrent version of our caching system. Our tests show how the SDC cache can be efficiently exploited by many threads that concurrently serve the queries of different users.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Science Applications,General Business, Management and Accounting,Information Systems

Cited by 108 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Comprehensive Review of Web Page Ranking Systems;2024 11th International Conference on Computing for Sustainable Global Development (INDIACom);2024-02-28

2. Index-Based Batch Query Processing Revisited;Lecture Notes in Computer Science;2023

3. An NVM SSD-based High Performance Query Processing Framework for Search Engines;IEEE Transactions on Knowledge and Data Engineering;2022

4. Three-level Compact Caching for Search Engines Based on Solid State Drives;2021 IEEE 23rd Int Conf on High Performance Computing & Communications; 7th Int Conf on Data Science & Systems; 19th Int Conf on Smart City; 7th Int Conf on Dependability in Sensor, Cloud & Big Data Systems & Application (HPCC/DSS/SmartCity/DependSys);2021-12

5. Improving Search Engine Performance Through Dynamic Caching;2021 40th International Conference of the Chilean Computer Science Society (SCCC);2021-11-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3