Learning Offset Probability Distribution for Accurate Object Detection

Author:

Qiu Heqian1ORCID,Li Hongliang1ORCID,Wu Qingbo1ORCID,Shi Hengcan1ORCID,Wang Lanxiao1ORCID,Meng Fanman1ORCID,Xu Linfeng1ORCID

Affiliation:

1. University of Electronic Science and Technology of China, China

Abstract

Object detection combines object classification and object localization problems. Current object detection methods heavily depend on regression networks to locate objects, which are optimized with various regression loss functions to predict offsets between candidate boxes and objects. However, these regression losses are difficult to assign the appropriate penalties for samples with large offset errors, resulting in suboptimal regression networks and inaccurate object offsets. In this article, we consider object location as offset bin classification problem, and propose a distance-aware offset bin classification network optimized with multiple binary cross entropy losses to learn various offset probability distribution, including single label distribution and distance-aware label distribution. On one hand, it provides gradient contributions for different samples based on the bounded probability instead of previous incalculable offset error. On the other hand, it explores the distance correlations between discrete offset bins to facilitate network learning. Specifically, we discretize the continuous offset into a number of bins, and predict the probability of each offset bin, in which the probability should be higher for the offset bin closer to the target offsets, and vice versa. Furthermore, we propose an expectation-based offset prediction and a hierarchical focusing method to improve the precision of prediction. We conduct extensive experiments to evaluate the effectiveness of our method. In addition, our method can be conveniently and flexibly inserted into existing object detection methods, which consistently achieves a large gain based on popular anchor-based and anchor-free methods on the PASCAL VOC, MS-COCO, KITTI, and CrowdHuman datasets. Code will be released at: https://github.com/QiuHeqian/DBC .

Funder

Sichuan Province Innovative Talent Funding Project for Postdoctoral Fellows

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture

Reference66 articles.

1. Zhaowei Cai, Quanfu Fan, Rogerio S. Feris, and Nuno Vasconcelos. 2016. A unified multi-scale deep convolutional neural network for fast object detection. In Proceedings of the European Conference on Computer Vision. 354–370.

2. Cascade R-CNN: Delving Into High Quality Object Detection

3. Cascade R-CNN: High Quality Object Detection and Instance Segmentation

4. D2Det: Towards High Quality Object Detection and Instance Segmentation

5. End-to-End Object Detection with Transformers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3