Query-Guided Resolution in Uncertain Databases

Author:

Drien Osnat1ORCID,Freiman Matanya1ORCID,Amarilli Antoine2ORCID,Amsterdamer Yael1ORCID

Affiliation:

1. Bar-Ilan University, Ramat-Gan, Israel

2. LTCI, Télécom Paris, Institut Polytechnique de Paris, Paris, France

Abstract

We present a novel framework for uncertain data management. We start with a database whose tuple correctness is uncertain and an oracle that can resolve the uncertainty, i.e., decide if a tuple is correct or not. Such an oracle may correspond, e.g., to a data expert or to a crowdsourcing platform. We wish to use the oracle to clean the database with the goal of ensuring the correct answer for specific mission-critical queries. To avoid the prohibitive cost of cleaning the entire database and to minimize the expected number of calls to the oracle, we must carefully select tuples whose resolution would suffice to resolve the uncertainty in query results. In other words, we need a query-guided process for the resolution of uncertain data. We develop an end-to-end solution to this problem, based on the derivation of query answers and on correctness probabilities for the uncertain data. At a high level, we first track Boolean provenance to identify which input tuples contribute to the derivation of each output tuple, and in what ways. We then design an active learning solution for iteratively choosing tuples to resolve, based on the provenance structure and on an evolving estimation of tuple correctness probabilities. We conduct an extensive experimental study to validate our framework in different use cases.

Funder

Israel Ministry of Science and Technology

ANR

Israel Science Foundation

Publisher

Association for Computing Machinery (ACM)

Reference101 articles.

1. Serge Abiteboul , Richard Hull , and Victor Vianu . 1995. Foundations of Databases . Addison-Wesley . Serge Abiteboul, Richard Hull, and Victor Vianu. 1995. Foundations of Databases. Addison-Wesley.

2. Foto N. Afrati and Phokion G . Kolaitis . 2009 . Repair Checking in Inconsistent Databases : Algorithms and Complexity. In ICDT. 31--41. Foto N. Afrati and Phokion G. Kolaitis. 2009. Repair Checking in Inconsistent Databases: Algorithms and Complexity. In ICDT. 31--41.

3. Parag Agrawal , Omar Benjelloun , Anish Das Sarma , Chris Hayworth, Shubha U. Nabar, Tomoe Sugihara, and Jennifer Widom. 2006 . Trio : A System for Data, Uncertainty, and Lineage. In PVLDB. 1151--1154. Parag Agrawal, Omar Benjelloun, Anish Das Sarma, Chris Hayworth, Shubha U. Nabar, Tomoe Sugihara, and Jennifer Widom. 2006. Trio: A System for Data, Uncertainty, and Lineage. In PVLDB. 1151--1154.

4. Evaluation of Monotone DNF Formulas

5. Putting lipstick on pig

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. CleanEr: Interactive, Query-Guided Error Mitigation for Data Cleaning Systems;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3