Secure implementations of typed channel abstractions

Author:

Bugliesi Michele1,Giunti Marco1

Affiliation:

1. Università Ca Foscari, Venezia, Italy

Abstract

The challenges hidden in the implementation of high-level process calculi into low-level environments are well understood [3]. This paper develops a secure implementation of a typed pi calculus, in which capability types are employed to realize the policies for the access to communication channels. Our implementation compiles high-level processes of the pi-calculus into low-level principals of a cryptographic process calculus based on the applied-pi calculus [1]. In this translation, the high-level type capabilities are implemented as term capabilities protected by encryption keys only known to the intended receivers. As such, the implementation is effective even when the compiled, low-level principals are deployed in open contexts for which no assumption on trust and behavior may be made. Our technique and results draw on, and extend, previous work on secure implementation of channel abstractions in a dialect of the join calculus [2]. In particular, our translation preserves the forward secrecy of communications in a calculus that includes matching and supports the dynamic exchange of write and read access-rights among processes. We establish the adequacy and full abstraction of the implementation by contrasting the untyped equivalences of the low-level cryptographic calculus, with the typed equivalences of the high-level source calculus.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3