Generating compiler optimizations from proofs

Author:

Tate Ross1,Stepp Michael1,Lerner Sorin1

Affiliation:

1. University of California, San Diego, CA, USA

Abstract

We present an automated technique for generating compiler optimizations from examples of concrete programs before and after improvements have been made to them. The key technical insight of our technique is that a proof of equivalence between the original and transformed concrete programs informs us which aspects of the programs are important and which can be discarded. Our technique therefore uses these proofs, which can be produced by translation validation or a proof-carrying compiler, as a guide to generalize the original and transformed programs into broadly applicable optimization rules. We present a category-theoretic formalization of our proof generalization technique. This abstraction makes our technique applicable to logics besides our own. In particular, we demonstrate how our technique can also be used to learn query optimizations for relational databases or to aid programmers in debugging type errors. Finally, we show experimentally that our technique enables programmers to train a compiler with application-specific optimizations by providing concrete examples of original programs and the desired transformed programs. We also show how it enables a compiler to learn efficient-to-run optimizations from expensive-to-run super-optimizers.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Reference24 articles.

1. Automatic generation of peephole superoptimizers

2. Explanation-based learning for the automated reuse of programs

3. A. Deutsch. Author of {6}. Personal communication July 2009. A. Deutsch. Author of {6}. Personal communication July 2009.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deriving efficient program transformations from rewrite rules;Proceedings of the ACM on Programming Languages;2021-08-22

2. Precise reasoning with structured time, structured heaps, and collective operations;Proceedings of the ACM on Programming Languages;2019-10-10

3. Modeling and Analysis of Indian Carnatic Music Using Category Theory;IEEE Transactions on Systems, Man, and Cybernetics: Systems;2018-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3