Semantics and algorithms for data-dependent grammars

Author:

Jim Trevor1,Mandelbaum Yitzhak1,Walker David2

Affiliation:

1. AT&T Labs - Research, Florham Park, NJ, USA

2. Princeton University, Princeton, NJ, USA

Abstract

We present the design and theory of a new parsing engine, YAKKER, capable of satisfying the many needs of modern programmers and modern data processing applications. In particular, our new parsing engine handles (1) full scannerless context-free grammars with (2) regular expressions as right-hand sides for defining nonterminals. YAKKER also includes (3) facilities for binding variables to intermediate parse results and (4) using such bindings within arbitrary constraints to control parsing. These facilities allow the kind of data-dependent parsing commonly needed in systems applications, particularly those that operate over binary data. In addition, (5) nonterminals may be parameterized by arbitrary values, which gives the system good modularity and abstraction properties in the presence of data-dependent parsing. Finally, (6) legacy parsing libraries,such as sophisticated libraries for dates and times, may be directly incorporated into parser specifications. We illustrate the importance and utility of this rich collection of features by presenting its use on examples ranging from difficult programming language grammars to web server logs to binary data specification. We also show that our grammars have important compositionality properties and explain why such properties areimportant in modern applications such as automatic grammar induction. In terms of technical contributions, we provide a traditional high-level semantics for our new grammar formalization and show how to compile grammars into non deterministic automata. These automata are stack-based, somewhat like conventional push-down automata,but are also equipped with environments to track data-dependent parsing state. We prove the correctness of our translation of data-dependent grammars into these new automata and then show how to implement the automata efficiently using a variation of Earley's parsing algorithm.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Interval Parsing Grammars for File Format Parsing;Proceedings of the ACM on Programming Languages;2023-06-06

2. On Parsing Programming Languages with Turing-Complete Parser;Mathematics;2023-03-25

3. Context-sensitive parsing for programming languages;Journal of Computer Languages;2022-12

4. A Model and Declarative Language for Specifying Binary Data Formats;Programming and Computer Software;2022-11-29

5. On Re-engineering the X.509 PKI with Executable Specification for Better Implementation Guarantees;Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security;2021-11-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3