iVIBRATE

Author:

Chen Keke1,Liu Ling1

Affiliation:

1. Georgia Institute of Technology, Atlanta, GA

Abstract

With continued advances in communication network technology and sensing technology, there is astounding growth in the amount of data produced and made available through cyberspace. Efficient and high-quality clustering of large datasets continues to be one of the most important problems in large-scale data analysis. A commonly used methodology for cluster analysis on large datasets is the three-phase framework of sampling/summarization, iterative cluster analysis, and disk-labeling. There are three known problems with this framework which demand effective solutions. The first problem is how to effectively define and validate irregularly shaped clusters, especially in large datasets. Automated algorithms and statistical methods are typically not effective in handling these particular clusters. The second problem is how to effectively label the entire data on disk (disk-labeling) without introducing additional errors, including the solutions for dealing with outliers, irregular clusters, and cluster boundary extension. The third obstacle is the lack of research about issues related to effectively integrating the three phases. In this article, we describe iVIBRATE---an interactive visualization-based three-phase framework for clustering large datasets. The two main components of iVIBRATE are its VISTA visual cluster-rendering subsystem which invites human interplay into the large-scale iterative clustering process through interactive visualization, and its adaptive ClusterMap labeling subsystem which offers visualization-guided disk-labeling solutions that are effective in dealing with outliers, irregular clusters, and cluster boundary extension. Another important contribution of iVIBRATE development is the identification of the special issues presented in integrating the two components and the sampling approach into a coherent framework, as well as the solutions for improving the reliability of the framework and for minimizing the amount of errors generated within the cluster analysis process. We study the effectiveness of the iVIBRATE framework through a walkthrough example dataset of a million records and we experimentally evaluate the iVIBRATE approach using both real-life and synthetic datasets. Our results show that iVIBRATE can efficiently involve the user in the clustering process and generate high-quality clustering results for large datasets.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Science Applications,General Business, Management and Accounting,Information Systems

Reference58 articles.

1. The Grand Tour: A Tool for Viewing Multidimensional Data

2. Baeza-Yates R. and Ribeiro-Neto B. 1999. Modern Information Retrieval. Addison Wesley New York.]] Baeza-Yates R. and Ribeiro-Neto B. 1999. Modern Information Retrieval. Addison Wesley New York.]]

3. The New Jersey data reduction report;Barbará D.;IEEE Data Eng. Bull.,1997

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3