Affiliation:
1. University of Edinburgh, Edinburgh, UK
Abstract
Fluid approximation results provide powerful methods for scalable analysis of models of population dynamics with large numbers of discrete states and have seen wide-ranging applications in modelling biological and computer-based systems and model checking. However, the applicability of these methods relies on assumptions that are not easily met in a number of modelling scenarios. This article focuses on one particular class of scenarios in which rapid information propagation in the system is considered. In particular, we study the case where changes in population dynamics are induced by information about the environment being communicated between components of the population via broadcast communication. We see how existing hybrid fluid limit results, resulting in piecewise deterministic Markov processes, can be adapted to such models. Finally, we propose heuristic constructions for extracting the mean behaviour from the resulting approximations without the need to simulate individual trajectories.
Funder
Engineering and Physical Sciences Research Council
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Science Applications,Modeling and Simulation