QoE Analysis of Spotify Audio Streaming and App Browsing

Author:

Schwind Anika1,Haberzettl Lorenz1,Wamser Florian1,Hoßfeld Tobias1

Affiliation:

1. University of Würzburg, Würzburg, Germany

Funder

Deutsche Forschungsgemeinschaft

Publisher

ACM Press

Reference12 articles.

1. Goodwater. 2018. Understanding Spotify: Making Music Through Innovation.

2. Irena Orsolic, Dario Pevec, Mirko Suznjevic, and Lea Skorin-Kapov. 2017. A machine learning approach to classifying YouTube QoE based on encrypted network traffic. Multimedia tools and applications , Vol. 76, 21 (2017), 22267--22301.

3. Ashwin Rao, Arnaud Legout, Yeon-sup Lim, Don Towsley, Chadi Barakat, and Walid Dabbous. 2011. Network characteristics of video streaming traffic. In Proceedings of the Seventh COnference on emerging Networking EXperiments and Technologies. ACM, 25.

4. Spotify Technology S.A. 2019 a. Spotify Company Info. https://newsroom.spotify.com/company-info/ Accessed July 4, 2019.

5. Spotify Technology S.A. 2019 b. Spotify Reports First Quarter 2019 Earnings, Shareholder Letter. https://s22.q4cdn.com/540910603/files/doc_financials/quarterly/2019/Shareholder-Letter-Q1--2019.pdf

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modeling Network Traffic and Exploring Distribution Fitting: A Case Study on Spotify;2023 8th South-East Europe Design Automation, Computer Engineering, Computer Networks and Social Media Conference (SEEDA-CECNSM);2023-11-10

2. Container Scheduling in Co-Located Environments Using QoE Awareness;IEEE Transactions on Network and Service Management;2023-09

3. A Benchmark of Non-intrusive Parametric Audio Quality Estimation Models for Broadcasting Systems and Web-casting Applications;Advances in Electrical and Electronic Engineering;2021-12-30

4. Delivering User Experience over Networks: Towards a Quality of Experience Centered Design Cycle for Improved Design of Networked Applications;SN Computer Science;2021-09-16

5. Cultural differences in music features across Taiwanese, Japanese and American markets;PeerJ Computer Science;2021-08-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3